skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitney, Barbara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present ∼10–40μm SOFIA-FORCAST images of 11isolatedprotostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37μm imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core massesMcranging from 20–430M, clump mass surface densities Σcl∼ 0.3–1.7 g cm−2, and current protostellar massesm*∼ 3–50M. From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold Σclfor massive star formation. However, the upper end of them*−Σcldistribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher Σclconditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an ∼40 yr baseline. 
    more » « less